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ABSTRACT

Major Depressive Disorder (MDD) is a common disorder that
often goes undiagnosed. Most diagnoses of MDD are evalu-
ated through a series of structured interviews. However, with
new computer vision techniques, the use of sMRI scans have
proven to be a useful tool in diagnosing diseases related to
the brain. Problems such as identifying Schizophrenia and
Alzheimer’s have shown great results when using neural net-
works. In this paper, we analyze the results of using transfer
learning to identify MDD in MRI scans[1]. Our results show
that the architectures used are exceptional and show mean-
ingful insights to other problems such as Schizophrenia, but
perform poorly on the MDD problem due to lack of a well
curated dataset.

Index Terms— Transfer Learning, ResNet, VGG19, Ma-
jor Depressive Disorder, Schizophrenia

1. INTRODUCTION

In the past decade, mental health has become more prominent
within society and less neglected within the medical industry.
Researchers and hospitals have begun to put more resources
to develop methodologies to identify such illnesses effec-
tively. Recently, the most common mental illnesses that have
been explored are Schizophrenia [2, 3, 4] and Alzheimer’s
[5, 6, 7, 8, 9, 10, 11]. However, in this paper we focus on a
more challenging and minimally explored problem - Major
Depressive Disorder (MDD).

MDD [12] is a persistent low mood and/or anhedonia
and is a common condition disorder that can often go undi-
agnosed. Currently, most diagnoses of MDD are evaluated
through a series of structured interviews that look at clinical
parameters. Even more so, around two-thirds of all cases of
depression, including Major Depressive Disorder (MDD), are
undiagnosed due to unreliable symptom-based criteria and
lack of a widely accepted quantifiable diagnostic tool.

Within the medical community, there is a huge push and
involvement to leverage machine learning in this task. We are
interested in using Structural Magnetic Resonance Imaging
(sMRI), which can potentially contain important features such
as biomarkers to help diagnosis MDD.

In this paper, we explore the use of Transfer Learning [13]
to build a robust deep learning model to predict MDD based
on sMRIs. Transfer learning is a methodology that uses a
model that has been pre-trained on a different dataset and is
used as starting point for a model on a second task. The intu-
ition is that the knowledge learned from the pre-trained model
might have insights that can be used on our current problem.
Formally, a machine uses the knowledge learned from a prior
assignment to increase prediction about a new task in transfer
learning.

We aim to explore the use of transfer learning and analyze
how various pre-trained models perform on our MDD dataset.
We first show that our models performs well on other classi-
fication problems such as the Schizophrenia dataset, and then
we compare results on the MDD dataset.

2. DATA

We use two different datasets in this paper, the Schizophre-
nia dataset and the MDD dataset. We use the Schizophrenia
dataset as a baseline to show that the transfer learning models
are a good architecture to aid MDD predictions. The MDD
dataset is directly related to our application. Both datasets
contain structural magnetic resonance neuroimaging (sMRI)
scans. These are a subset of MRIs using a non-invasive tech-
nique for examining the anatomy and pathology of the brain.
The following sub-sections go into detail regarding the break-
down of the datasets.

MDD Dataset Breakdown
Cog Normal Cog Impaired

Train 7060 980 S/P 1

353 49 Patients

Validation 1000 100 S/P 1

50 5 Patients

Test 1040 100 S/P 1

52 5 Patients

Table 1. Breakdown of MDD dataset.

1Slices per Perspective (Axial, Coronal, Sagittal)



2.1. Major Depression Disorder Data

The MDD dataset is a private dataset given to us by Professor
Jia Guo. The dataset contains sMRI scans from 514 patients.
These 3D scans are then sliced into three different perspec-
tives - Axial (divides the brain into top and bottom halves, see
Figure 1), Coronal (perpendicular, see Figure 2), and Sagittal

Fig. 1. Axial Perspective of MRI Image

Fig. 2. Coronal Perspective of MRI Image

(midline of the brain, see Figure 3 ).

Fig. 3. Sagittal Perspective of MRI Image

Table 1 shows the breakdown of the datasets for each per-
spective. It should be noted that there is an extreme imbalance
in the classes, as 91.22% of the dataset is Cognitive Normal
MRI scans, while only 8.78% of the dataset contains MDD
MRI scans.

2.2. Schizophrenia Data

The Schizophrenia dataset is a private dataset given to us by
Professor Jia Guo. The dataset contains sMRI scans from
2218 patients. Table 2 shows the breakdown of the datasets
for each perspective. Contrary to the MDD dataset, the train
and validation data are well balanced, with a larger proportion

of Schizophrenia MRI scans over Cognitive Normal. The test
data is more equally balanced, having only one more Cogni-
tive Normal patient over Schizophrenia.

Schizophrenia Dataset Breakdown
Cog Normal Cog Impaired

Train 12600 13540 S/P 2

1358 728 Patients

Validation 380 740 S/P 2

19 37 Patients

Test 520 500 S/P 2

26 25 Patients

Table 2. Breakdown of Schizophrenia dataset.

3. METHODS

We implemented various pre-trained neural networks on both
datasets to showcase that (i) our chosen model performs well
on a well-established problem that has previously shown great
results and (ii) see how our MDD dataset performs on various
architectures. This section is split up into two sections. The
first subsection discusses the various transfer learning mod-
els we used, and the second subsection discusses our training
settings for reproducibility.

3.1. Transfer Learning Models

All transfer learning models that we use are from the Py-
torch library. These models are pretrained on the 1000-class
ImageNet[14] dataset. When loading the pre-trained model,
we freeze the pre-trained weights and substitute the final out-
put layer of each model with a dense layer of 2 hidden units.

The first pre-trained model we used is the ResNet [15]
model. This model is a residual learning framework to ease
the training of networks that are substantially deeper than
those used previously. The author’s explicitly reformulate
the layers as learning residual functions with reference to the
layer inputs, instead of learning unreferenced functions [15].
ResNet is a common and powerful architecture that has shown
great results on various image classification problems.

Our second pre-trained model is one previously discussed
in class VGG-19[16]. This model is also very popular in both
industry and academia. We have chosen the 19 weight layers
configuration of this model. The main contribution of this ar-
chitecture is that they use a 3x3 convolution filter throughout
their whole net.

We train both full datasets (all perspectives) on both pre-
trained models. Furthermore, we also train each model on
specific perspectives from each dataset. We did this so we
can compare how the model performs with all perspectives
vs. trained individually.

2Slices per Perspective (Axial, Coronal, Sagittal)



Axial Coronal Sagittal All Perspectives
MDD Schizophrenia MDD Schizophrenia MDD Schizophrenia MDD Schizophrenia

Accuracy 0.9122 0.8300 0.9122 0.5300 0.9122 0.5300 0.9122 0.5300
Sensitivity 0.0000 0.8000 0.0000 0.5300 0.0000 0.5500 0.0000 0.5700
Specificity 1.0000 0.7900 1.0000 0.6400 1.0000 0.6600 1.0000 0.8500
Precision 0.0000 0.8700 0.0000 0.4300 0.0000 0.2300 0.0000 0.1900

Table 3. Performance of VGG-19 Network on MDD and Schizophrenia Datasets after Transfer Learning from ImageNet

Fig. 4. Training and Validation Curves for ResNet and VGG-19 on Schizophrenia (left) and MDD (right) 2D MRI-slices.

Axial Coronal Sagittal All Perspectives
MDD Schizophrenia MDD Schizophrenia MDD Schizophrenia MDD Schizophrenia

Accuracy 0.9122 0.9900 0.9105 0.6400 0.9061 0.7100 0.9122 0.8800
Sensitivity 0.000 0.9800 0.000 0.6100 0.000 0.6600 0.000 0.8500
Specificity 1.000 0.9500 0.9981 0.5200 0.9933 0.5900 1.000 0.8400
Precision 0.000 0.9900 0.000 0.7700 0.000 0.8200 0.000 0.9330

Table 4. Performance of ResNet on MDD and Schizophrenia Datasets after Transfer Learning from ImageNet



3.2. Model Training Settings

There were several considerations when applying transfer
learning on our MRI data. Firstly, all our models were pre-
trained on the open-source dataset, ImageNet [14], which
consists of three channel RGB images. However, MRI data
contains only one channel, so it cannot be fed directly into
any of our networks. We chose to solve this problem by repli-
cating the one channel we were given three times. Aside from
replicating the given channel, we applied a center crop of size
192 on the Axial slices. This allowed us to reduce the image
size while keeping all the information in the MRI scan. Cen-
ter crop could not be applied on Sagittal or Coronal slices,
since that would remove relevant information. Finally, the
scans were normalized according to the well-known means
and standard deviations of the ImageNet dataset. The means
for the three channels are 0.480, 0.456, and 0.406. The corre-
sponding standard deviations are 0.229, 0.224, and 0.225.

With the pre-processing complete, we only needed to re-
train the last fully-connected layer of the networks. This is
called fine-tuning within the transfer learning paradigm. We
used PyTorch’s SGD optimizer with a dynamic learning rate
that decreased by one-tenth every seven epochs. (After sev-
eral epochs, we expect the algorithm to near the global min-
imum, so it makes sense to decrease the learning rate to pre-
vent our algorithm from diverging). Each model was trained
(and saved) for twenty-five epochs, without early stopping.
After the train-validation loop, we selected the saved model
which maximized the validation accuracy and minimized the
validation loss.

4. RESULTS

We successfully ran the two pre-trained neural networks,
ResNet and VGG-19, on both the Schizophrenia and MDD
datasets. We trained both networks on each of the three per-
spectives (Axial, Coronal, Sagittal), as well as a combination
of ”All” perspectives. We produced predictions of whether
or not the MRI is MDD or Schizophrenia, respective to the
dataset. Table 3 and Table 4 show the performance of the
VGG-19 and ResNet models respectively. The training and
validation curves can be seen in Figure 4.

4.1. Results on Schizophrenia Data

The VGG-19 models trained on each of the Coronal, Sagittal,
and All perspectives all resulted in an accuracy of about 53%.
However, the Axial perspective had a noticeably greater ac-
curacy of of about 83%. The Axial perspective had a visibly
greater sensitivity and precision compared to the other per-
spectives as well. The All perspective had the highest speci-
ficity of 85%.

The ResNet models all had a higher performance than the
VGG-19 models. Specifically, training on the Axial perspec-
tive greatly outshined the other perspectives, with an accuracy

of 99%, sensitivity of 98%, specificity of 95%, and precision
of 99%. Training on the All perspective, which includes Ax-
ial in its dataset, had the second best performance, although
Axial still had a much greater accuracy, sensitivity, and speci-
ficity. The Coronal perspective had the worst performance,
with a noticeably lower accuracy of 64% and specificity of
52%.

In Figure 4 we can see that the training and validation ac-
curacies converge to around 100% for the Axial, Coronal, and
Sagittal perspectives for both VGG-19 and ResNet. However,
the validation accuracy for the All perspective only converged
to around 85%.

4.2. Results on Major Depression Disorder Data

The VGG-19 models trained on each of the Axial, Coronal,
Sagittal, and All perspectives all resulted in an accuracy of
91.22%. Every model also reported a sensitivity of 0%, pre-
cision of 0%, and specificity of 100%.

The ResNet models had slightly more variance than the
VGG-19 models, where the Axial and All perspectives also
resulted in an accuracy of 91.22%. Coronal and Sagittal per-
spectives had a slightly worse performance of 91.05% and
90.61% respectively. This is a very similar performance to
the VGG-19 models. Once again, all of the ResNet models
reported 0% for both sensitivity and precision. The specifici-
ties for the Axial and All perspectives were both 100%, while
Coronal had a specificity of 99.81% and Sagittal 99.33%.

In Figure 4 we can see that the training accuracies con-
verge to around 100% for the Axial, Coronal, Sagittal, and
All perspectives for both VGG-19 and ResNet. However, the
validation accuracy for the Axial, Coronal, Sagittal, and All
perspectives only converge to about 87% for VGG-19 and
ResNet. In the All perspective VGG-19 model, we can even
see a large dip in accuracy at epoch 11.

5. DISCUSSION

From our training and validation plots, we observe that the all
models on all the various datasets converge and have a rela-
tively high accuracy. However, these metrics are misleading
with respect to the MDD dataset.

We notice that in both Table 3 and Table 4, the test ac-
curacy is high. However, the other metrics - sensitivity and
specificity - showcase highly unbalanced metrics. With re-
spect to the MDD dataset, we report that the specificity is
almost almost a 100%. In contrast, the sensitivity is always
0%. As a matter of fact, some of the MDD models end up
with an accuracy of 91.22%, which is the exact percentage of
Cognitive Normal scans in the dataset. This indicates that the
model is not learning anything and is just predicting Cognitive
Normal for all examples in the test set. This can be attributed
to (i) the imbalance of classes in the MDD datasets and (ii)
not having enough distinct patients in the datasets. Having an



imbalance in the dataset leads to the neural network not being
able to properly distinguish patterns and characteristics be-
tween the two classes. Not having enough distinct patients in
the data results in the model not able to generalize the MDD
problem to unknown distinct patients. Even if we perform
data augmentation on our current dataset, we would only be
augmenting data on a small patient sample, which would not
help in generalizing the data.

In contrast, for the schizophrenia dataset, we see much
better results across all metrics. Both Table 3 and Table 4
show that the schizophrenia dataset is able to effectively dis-
tinguish healthy and non-healthy classes based on the sensi-
tivity and specificity metrics across all models and subsets of
data.

We also observe that between both datasets, the ResNet
model shows better results. This can be attributed to the ar-
chitectural differences between the two models. VGG-19 has
more layers and thus has a tendency to overfit, leading to a
relatively worse performance on the test set.

We also notice that between both datasets and models, the
Axial subset of the data tends to have better metrics compared
to other data subsets. We see that in Figure 1, this axis of the
scan shows more information of the brain compared to the
other perspectives. This allows the models to extract more
patterns and characteristics to distinguish the classes.

6. CONCLUSION

In this paper, we explore the use of transfer learning on the
MDD application. We run the MDD dataset on two pre-
trained models - ResNet and VGG-19. Both these architec-
tures have proven to report great results on the 100-class Im-
ageNet dataset. Furthermore, we also ran these two models
on a schizophrenia dataset to show that these models perform
well on similar problems and sMRI scans. From our results
and discussion, we observed that the models perform well on
schizophrenia but not on MDD. Two reasons arise from our
analysis, (i) a high class imbalance in the MDD data, and (ii)
not enough distinct patients in the MDD data to allow for gen-
eralization. We can conclude that for the MDD task, the prob-
lem arises not from the model choice but rather the dataset. It
is known that neural networks rely heavily on a well curated
dataset to alleviate bias and to increase generalization. As fu-
ture work, we would like to focus on curating a better data
set for MDD. This would entail in acquiring more distinct pa-
tients with MDD. With a well curated MDD dataset, based on
our insights from the schizophrenia results, the models should
effectively be able to distinguish the two classes.
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