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Abstract

This work aims to explore established causal-based frameworks and evaluate them under
causality-based fairness notions, comparing these measures to statistical fairness metrics.
A major limitation of existing causal literature is that it assumes that a causal model to
work from, which is rarely the case. For this reason, part of our work will be analyzed
ways to discover such a causal model through which we will evaluate the fairness notions
specifically the direct and indirect effect of the sensitive attribute on the outcome. In this
paper, we developed a casual fairness pipeline for observational data. This pipeline can
be applied to analyze classification outcomes and give insight into the effect of statistical
fairness mitigation algorithms.

1. Introduction

Addressing the notion of fairness in machine learning has become a more ubiquitous problem
in recent years, as learning algorithms have been more involved in making societal decisions
in various aspects, including job hiring, college admission, and loan applications, to name a
few. Traditional fairness metrics, such as demographic parity and equalized odds, strictly
depend on the joint distribution of the observational criteria and have been shown to fail
to detect unfairness in the presence of statistical anomalies, such as Simpson’s paradox
Simpson (1951).

Examining fairness through the lens of causality has been recently gaining traction as the
accepted method for appropriately addressing the notion of fairness, as statistical fairness
notions face many challenges, such as subgroups yielding different fairness results when
compared with the entire population. An example of this phenomenon is evidenced by the
IMPACT teacher evaluation system, which is claimed to be biased against teachers who
have been assigned to students at a lower starting academic level, where the income level
of the location of the school influences the level of the students in the classO’Neil (2016).
Fairness in this situation can only be claimed when the dependence between confounder
and protected attribute is broken, that is, the firing rates of teachers are examined through
an intervention on the starting level of students in the teacher’s class: are firing rates equal
when all teachers are assigned high-level students versus low-level students? This real-
world example illustrates the need to consider causal frameworks when addressing fairness,
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as traditional statistical metrics based on correlation would have missed the implicit bias
in the data-generating process: very few teachers in high-income schools were found to be
assigned to low-level students Makhlouf et al. (2020b).

This work aims to further the analysis of causal fairness at the practical level. While
much work has been done framing the notion of fairness under a causal framework, such
as individual fairness Dwork et al. (2012) Joseph et al. (2016) Louizos et al. (2016) Zemel
et al. (2013), fairness through unawareness Grgic-Hlaca et al. (2016), counterfactual fairness
Kusner et al. (2017), we seek to establish a causal model from which to baseline causal-based
fairness metrics and compare these results to statistical fairness metrics.

2. Related Work

2.1 Statistical-based fairness metrics

Most statistical-based fairness metrics can be separated into three different categories: in-
dependence, separation, and sufficiency Barocas et al. (2019). Given a sensitive attribute A,
independence fairness metrics are satisfied when Ŷ ⊥ A. This means that the proportion of
the predicted outcome should be the same between different groups. Notice that this does
not allow A to be a proxy for Ŷ . Separation states that A can serve as a proxy for Ŷ as long
as Ŷ , but should be independent to A given Y (Ŷ ⊥ A|Y ). Satisfying sufficiency ensures
that a classifier is well-calibrated for each group of the sensitive attribute (Y ⊥ A|Ŷ ).

One of fairness metrics that falls under the category of independence is statistical
parity, also known as demographic parity, and is one of the most commonly accepted
fairness metrics Dwork et al. (2012). A classifier Ŷ satisfies statistical parity if:

Pr(Ŷ | A = 0) = Pr(Ŷ | A = 1)

This metric requires the prediction to be conditionally independent of the sensitive
attribute. The main drawback of this metric is that when base rates of the label are
unequal when looking at the population partitioned by the sensitive attribute, this metric
can be misleading. Another drawback is the potential for what Barocas and Selbst refer
to as “masking”, in which the model optimizes performance for the majority group and
negatively impacts another protected group by random-selection to achieve the fairness
notion, which is particularly a problem for statistical parity Makhlouf et al. (2021).

Unlike statistical parity, equalized odds, which falls under the category of separation,
takes into account both the predicted and actual outcomes and allows Ŷ to depend on A
but only through the target variable Y Hardt et al. (2016). Formally,

Pr(Ŷ = 1 | Y = y, A = 0) = Pr(Ŷ = 1 | Y = y, A = 1) ∀y ∈ {0, 1}

For the outcome y = 1, this implies that Ŷ must achieve an equal true positive rate
(TPR) across groups, and for y = 0, Ŷ must achieve an equal false positive rate (FPR) across
groups. This mitigates the “laziness” problem present in statistical parity by punishing
models that optimize accuracy for the majority group Makhlouf et al. (2021). We will focus
mainly on these two metrics in our experiments.

2.2 Casual based fairness

We now turn our focus to causal-based fairness, as it is the core of this work. The most
common non-causal fairness notion is total variation (TV) - such as statistical parity, de-
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mographic parity, or risk difference. One of the biggest limitations with respect to TV is
that it is purely statistical nature which makes it unable to to reflect the causal relationship
between the sensitive attribute and the outcome. With this in mind, causal-based fairness
can give another perspective (Makhlouf et al. (2020a)).

Within causal-based fairness, there are two different frameworks - disparate impact
(Barocas and Selbst (2016); Plecko and Bareinboim (2022)) and disparate treatment (Baro-
cas and Selbst (2016)). Disparate impact aims at ensuring the equality of outcomes across
all groups. Disparate treatment seeks equality of treatment achievable through prohibiting
the use of the sensitive attribute in the decision process.

One example of a causal-based fairness metric in the disparate impact framework is the
total effect (TE) (Makhlouf et al. (2020a)). TE is the causal version of TV and is defined
in terms of experimental probabilities as follows:

TEa1,a0(y) = Pr(ya1)− Pr(ya0)

where A = a0 denotes the privileged group and A = a1 the disadvantaged group. TE
measures the effect of the change of A from a1 to a0 on Y = y along all the causal paths from
A to Y . We also remark that while TV reflects the difference in proportions of Y = y in the
current cohort, TE reflects the difference in proportions of Y = y in the entire population.

With respect to the disparate treatment framework, the common causal-based fairness
metrics include direct effect, indirect effect and path-specific effect (Pearl (2001)). An effect
can be deemed fair, unfair, or spurious by an expert of the scenario at hand. The specific
notion for direct effect (DE) is

DEa1,a0(y) = Pr(ya1 , Za0)− Pr(ya0)

Now, here Z is the set of mediators between paths from the sensitive attribute to the
target label Y (A → Z → Y ). By assuming that all Z take values A = a0, we can measure
the effect from when A = a1, essentially masking off all of the indirect effects. Similarly,
the indirect effect (IE) works by masking the effect of the direct path and assuming all the
mediators Z take values the natural value of when A = a1.

IEa1,a0(y) = Pr(ya0 , Za1)− Pr(ya0)

Indirect effect is assessed using the causal effect along the paths that pass through proxy
attributes. A high value of direct effect implies that there is some sort of discrimination, but
indirect effect can be decomposed into those effects that are explainable and those that are
true discrimination. A fair or explainable discrimination is measured using causal pathways
passing through explaining variables, which we can denote as ED(Y ). We also denote the
discriminating path effect as indirect discrimination (ID(Y )). Each of these causal effects
can be estimated through observational data Zhou and Yamamoto (2020).

3. Methods

3.1 Datasets

3.1.1 ACSIncome

The primary dataset used for this analysis was the ACSIncome, compiled by Ding et al.
(2021) as an alternative to the UCI Adult dataset Kohavi and Becker (1996). It was
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reconstructed with the IPUMS interface to the Current Population Survey (CPS) data
from 1994 Ruggles (2021). The prediction task for this dataset mirrors that of the UCI
Adult: predicting whether an individual’s income is above $50,000. It contains 1,599,229
observations and 10 different features, of which we used 7 features, following the causal
structure modeling of the UCI Adult dataset as per Binkyt.e-Sadauskien.e et al. (2022).
The summary of the features used in our modeling is listed in Table 2 in Appendix A.

3.1.2 UCI Adult

The dataset we used for baseline comparison is the well-known UCI Adult dataset Kohavi
and Becker (1996), compiled from the 1994 Census database. As a model for the newer
ACSIncome dataset, it naturally also predicts whether or not an individual earns above
$50,000 annually. It contains 48,842 observations and 14 features, a subset of which are
identical to those present in the ACSIncome dataset. For our modeling, we used a subset
of features of the UCI Adult dataset that were also present in the ACSIncome dataset.

3.2 Pipeline

The statistical framework is limited in that it cannot address notions of bias that are
introduced through proxy features that may be correlated with the sensitive attribute(s).
In this scenario, the causal framework has an additional branch that explains this potential
mechanism of bias, which we denote as an indirect effect. The indirect effect can take on
two forms: explainable discrimination and indirect discrimination. The former is legitimate
form of bias that is uncoupled from the sensitive attribute, while the latter allows for bias
to unfairly influence the target through a proxy feature for the sensitive attribute.

To draw a fair comparison between the statistical and causal fairness metrics, we first
develop a pipeline to calculate the casual fairness values. As shown in Fig 5, our pipeline
will consist of first learning a causal structure model (CSM) for our chosen datasets. For
our experiments, we just use the PC algorithm for structure learning, as our focus is on
evaluating the sensitivity of causal structure metrics on addressing bias and drawing a
comparison to statistical causal metrics (Figure 5).

After learning the CSM, we use this to first measure the direct and indirect effects on
the raw data and compare these causal metrics to the equal opportunity and disparate
impact statistical metrics. As the goal of addressing fairness is to ultimately correct bias
present in the data, we then perform four different bias correcting algorithms to see how
sensitive each metric is to shifts in the data: adversary debiasing Lemoine et al. (2018),
reweighing (Kamiran and Calders (2012)), rejection option (Kamiran et al. (2012)), and
optimized preprocessing (Calmon et al. (2017)).

3.3 Linking statistical fairness metrics and casual fairness metrics

Typically, causal fairness measure is calculated on the true label Y . We can answer question
of if there is bias in the data generation process by calculating the direct and indirect effect
of A on Y . Now, if causal effect is calculated on a predicted outcome of a classifier Ŷ , we
can answer the question of if there is bias when generating the prediction model.

We coin the following terms: 1) changes in direct effect (DE(Y )−DE(Ŷ )), 2) changes
in explainable discrimination: (ED(Y ) − ED(Ŷ )), 3) changes in indirect discrimination
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ID(Y )− ID(Ŷ ). By analyzing, these changes we can potentially have another way to rank
fairness mitigation algorithms.

There is no direct interconnect between the causal and fairness metrics because in the
real world there are confounders that might affect the causal effect between A and Y . Both
direct effect and indirect effect might contribute to the bias detected with disparate impact
or equal opportunity difference, but since total effect is associated with disparate impact.
So, there is a reduction in TE, we know that disparate impact values will move toward to
1 (the model is fair when disparate impact is equal to 1). Since, if TE(Ŷ ) = 0 then

TE(Ŷ ) = DE(Ŷ ) + IE(Ŷ )

0 = DE(Ŷ ) + IE(Ŷ )
DE(Ŷ ) = IE(Ŷ )

and TE(Ŷ ) = 0 potentially can be achieve in two way. One way is that DE(Ŷ ) and
IE(Ŷ ) are both 0. This means that there is no causal connection from A to Y . Then, poten-
tially any mediator among the causal path is not used for prediction. Another path is when
DE(Ŷ ) and IE(Ŷ ) are offsetting each other. Then, we need to conduct a secondary analysis
to see if there IE(Ŷ ) consists of explainable discrimination or indirect discriminating.

3.4 Github link and packages used

Our code is available on GitHub. Causal effects are estimated using the R paths package
(Zhou and Yamamoto (2020)). We used the statistical fairness metrics and mitigation
algorithms from Bellamy et al. (2019).

4. Experiments

4.1 Demonstrating the calculation of casual metrics through UC Berkeley
1973 Graduate Admission dataset

One of the classical examples to demonstrate the problems with the statistical fairness
notion is Simpson’s paradox, which can be summarized by the formulation below:

P (Y |A) < P (Y |¬A)
P (Y |A,Z = z) < P (Y |¬A,Z = z)

where A is the sensitive attribute, Y is the target variable and Z is other random variable
of the dataset. In colloquial terms, this means that although there is bias detected by
conditioning on the sensitive attribute, if we condition on the joint of the sensitive attribute
and another random variable, this bias can be potentially explained away.

The UC Berkeley 1973 admission data presents an example of Simpson’s paradox, where
it appears that the overall admission of the university is biased towards accepting more male
students versus female students. However, conditioning on the acceptance rate by individual
departments, we see that the female acceptance rate is higher across all departments (Table
3).

Therefore, many studies have suggested that the admission rate difference is a result of
female students choosing to apply to departments with lower acceptance rates. While this
argument might seem feasible and valid, we cannot accept it to be true without understand-
ing the causal effects of the model. The argument can be easily debunked by assuming that
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Figure 1: Causal discovery on the Berkeley
admission dataset (PC algorithm)

Statistical Metric Score

Disparate Impact P (A=F |Y=1)
P (A=M |Y=1) 0.78

Causal Metrics
Direct Effect A → Y 0.09 ±.01
Indirect Effect A → M → Y 0.006 ±.001

Table 1: Fairness evaluation of admission data.

there is a potential confounder (e.g applicant’s aptitude) that affects a student’s choice of
the department and also the admission outcome, and by conditioning on this confounder,
we still discover direct effect of the gender on the admission outcome.

Feeding the dataset through our pipeline, we estimated the direct effect and the indirect
effect of the sensitive attribute. The results of the casual discovery algorithm are shown in
Figure 1. Information of the direct effect and the indirect effect via the departments are
summarized in Table 1.

Analyzing the results from the experiment, we cannot reject the hypothesis that college
admission is not determined by gender, since through causal discovery, we still see a direct
path from gender to admission. Also, looking at the causal effects, the direct effect is still
dominating with of value of 0.9, while the indirect effect is 0.006. That said, this process
of computing the statistical fairness metrics along with the causal based fairness metrics is
a more comprehensive approach to understanding and mitigating the fairness problem.

4.2 Analyzing the effect of fairness mitigation algorithm on causal and
statistical fairness metric through the UCI Adult and ASCIncome datasets

The structural causal model (SCM) for the UCI Adult dataset obtained using the PC
algorithm is shown in Figure 2. As done by Binkyt.e-Sadauskien.e et al. (2022), we first
introduced domain knowledge in the form of a temporal partial order by defining three
tiers. In the first tier, we included age and sex. In the second tier, education and
marital status, and in the last third tier, working class, number of working hours,
and income. Upon inspection, the SCM appears reasonable. There are three paths from the
sensitive attribute to the target variable, income: 1) The direct path (sex → income) 2) the
discriminative, indirect path (sex → martial status → income) and 3) the explainable,
indirect path (sex → education → income). The second path is considered discriminating,
since marital status is likely correlated with the sensitive attribute, sex. This can be due
to the fact that females are more likely to take maternity leave once married.

Figure 4 shows the direct and the indirect caused effect on the target outcome Y . The
direct effect of gender on income is 0.181, while indirect effect via the education path
and marital status is 0.005 and 0.008 respectively. From this we can conclude that the
direct effect of sex on income is still dominating over the indirect path and that there is
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Figure 2: SCM for the UCI Adult and ASCIncome datasets using PC Algorithm

no discrimination via marital status. Just by looking at this result, it is mostly likely
that disparate impact will flag this model as biased. After training a ERM algorithm, we
do observe that disparate impact and equalized odds different show that there is a bias.

After applying the adversarial debiasing algorithm, we observe changes in the causal
effect (Figure 4) and the statistical fairness metrics (Figure 3). We can see that both direct
effect and total effect greatly decreased and the indirect, explainable effect via education

largely increased from 0.005 to 0.017. With the reweighting algorithm, we observed the same
increase in the disparate impact and equal opportunity difference, but the direct effect of
reweighting algorithm decreased as much as with the adversarial debiasing algorithm. With
the optimizing preprocessing algorithm, most of the direct effect are pushed towards the in-
direct effect explained by education. After using the rejection option algorithm, we can see
that the total effect decreased, but the indirect, discriminative effect via marital status

is much more higher, which can be problematic since this fairness mitigation method might
be introducing other biases to the classifier, increasing the discriminative bias. One key
finding is that all four fairness mitigation algorithms were able to address the bias initially
present in the data, and while the adversary debiasing algorithm resulted in the largest
mitigation, the rejection option algorithm was the most successful in reducing direct effect,
which was the greatest source of bias initially.

We conducted the same experiment with the ASCIncome dataset. The results are
reported in (Figures 6, 7 and Table 5). Discovering and computing time was much higher
due to the large number of samples in this dataset. This dataset also discovered biases
through the disparate impact and equal opportunity metrics. All four fairness mitigation
algorithms were able to reduce the bias, but only the rejection option algorithm showed
a decrease in the direct effect. This is likely due to the larger amount of data or due to
problem with implementing the algorithm for measuring causal effects. We are actively
looking into this issue.

5. Conclusion

In this paper, we developed a casual fairness pipeline for observational data in an effort to
marry statistical and causal fairness metrics to yield a more comprehensive approach. This
pipeline can be applied to analyze classification outcomes and give insight into the effect of
statistical fairness mitigation algorithms. Statistical fairness metrics have its limitations,
such as being unable to deal with the Simpson’s paradox, but there are also benefits to
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Figure 3: Statisical fairness metrics on UCI adults.

Figure 4: Casual fairness evaluation for UCI Adult.

using these metrics, such as that they can be computed efficiently, and it is more stable as
compared to the causal fairness metrics. Causal fairness metrics are dependent on the causal
structure model defined, and estimation of causal metrics based on this structure adds extra
uncertainty, as the structure is merely hypothetical based independence assumptions on the
given population. Through our experiments, we showed that casual fairness metrics can
give insight into the specific cause of the bias in a classifier by identifying the path-specific
indirect effects. We believe that causal fairness metrics and statistical fairness metrics should
be used in combination, especially when multiple fairness mitigation methods obtain the
same level of statistical fairness mitigation.
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Appendix A.

Feature Description Type

AGEP Age Numerical
COW Class of worker Categorical
SCHL Educational attainment Categorical
MAR Marital status Categorical
WKHP Usual hours worked per week past 12 months Numerical
SEX Sex Categorical
PINCP Total person’s income Categorical

Table 2: ACSIncome Feature Summary

Men Women

Department Applied Admitted (%) Applied Admitted (%)
A 825 62 108 82
B 520 60 25 68
C 325 37 593 34
D 417 33 375 35
E 191 28 393 24
F 373 6 341 7

Table 3: UC Berkeley 1973 admission rate by department

Adversary Reweighting Rejection Optimized
Debiasing Option Preprocessing

TE(y)− TE(ŷ) -0.019 -0.003 0.108 -0.038
DE(y)−DE(ŷ) -0.019 -0.001 0.106 -0.040
ED(y)− ED(ŷ) 0.002 0.000 0.003 0.000
ID(y)− ID(ŷ) -0.003 -0.001 -0.001 0.003
Equal Opportunity

0.234 0.381 0.397 0.144
Improvement
Disparate Impact

0.260 0.565 0.591 0.415
Improvement

Table 4: Summarizing of the changes in the causal and statistical fairness metrics for the
UCI dataset
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Adversary Reweighting Rejection Optimized
Debiasing Option Preprocessing

TE(y)− TE(ŷ) -0.019 -0.003 0.108 -0.038
DE(y)−DE(ŷ) -0.019 -0.001 0.106 -0.040
ED(y)− ED(ŷ) 0.002 0.000 0.003 0.000
ID(y)− ID(ŷ) -0.003 -0.001 -0.001 0.003
Equal Opportunity

0.234 0.381 0.397 0.144
Improvement
Disparate Impact

0.260 0.565 0.591 0.415
Improvement

Table 5: Summarizing of the changes in the causal and statistical fairness metrics for the
ACSIncome dataset

Figure 5: Fairness Comparison Pipeline
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Figure 6: Statisical fairness metrics on ASCIncome

Figure 7: Casual fairness evaluation for ASCIncome
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