
Neural distance embeddings for biological sequences
E4040.2021Fall.BIOM.report.rr3415.pc2946.hs3164

Rohith Ravindranath rr3415, Philippe Chlenski pc2946, Hannah Steele hs3164
Columbia University

Abstract
The goal of this project was to reimplement several key
aspects of a recent paper by Corso et al. concerning a
new method for learning embeddings for biological
sequence data, as well as to extend the analysis to novel
data and train-test split methods. We were able to
reimplement and generalize the authors’ code, found good
sets of hyperparameters, and did preliminary explorations
of the aforementioned topics. However, not every aspect of
our results agreed with the original paper; in particular,
our hyperbolic distance function-based models behaved
differently.

1. Introduction
The recent paper ‘Neural distance embeddings for
biological sequences’ by Corso et al. [2] introduces
NeuroSEED, a promising new technique for learning
representations of biological sequences. The authors boast
fast and accurate heuristics for inference on
phylogenetically-related sequences such as edit distance
approximation and hierarchical clustering.

The main idea of NeuroSEED is to create a Siamese
neural network which encodes any two sequences in a
dataset so that their distance in embedding space
(according to some distance metric chosen by the user) is
as close as possible to the true distance (obtained by e.g.
computing edit distances directly).

While promising, the authors’ results were quite
preliminary. Two limitations in particular stand out in
their analysis.

First, although they tested their method on three
datasets, all datasets were produced from different regions
from the 16S rRNA gene, which is known to have very
strong structural constraints. Since the value of these
learned representations depends on the strength of the
underlying manifold (unsurprisingly, this approach fails to
compress randomly generated strings of DNA), the
stronger-than-normal constraints on 16S rRNA sequence
may translate into non-generalizable results. Thus, one of
the goals of this project was to investigate the ability of
this approach to generalize to other sequences. We
successfully ran the NeuroSEED algorithm on a set of
7,010 sequences of the PheS (phenylalanine-tRNA
synthetase, subchain A) gene. Because of computational
and time constraints, we did not explore in silico mutation
trees or noncoding DNA.

The second limitation of the original paper is the
authors’ approach to test-train independence. Although
there is no commonly agreed-upon approach to train-test
independence in a phylogenetic context—indeed, the
authors’ approach of choosing samples randomly without
paying special attention to the relationship between
samples is common—it becomes difficult to disentangle
desirable forms of overfitting (manifold learning) from
undesirable overfitting (e.g. by memorizing distances
between pairs of neighbors in the training set). The
original datasets used by the authors are densely sampled,
and thus it is quite likely that, for any pair of sequences in
the test set, the training set contains pairs of very closely
related sequences with known edit distance.

To explore this, we introduced a “phylogenetic”
approach to train-test split, where entire subtrees of height
n are added to the test set. This ensures that the model
cannot memorize relationships between closely related
sequences, and instead must rely on deeper underlying
structure in the data. We expected that the more the model
tended to memorize specific distances, the worse the gap
between training and test loss would be as n increased.
We ran this on the same set of 7,010 PheS sequences for
values of n from 1 (random) to 8 (test set consists of
subtrees of ~256 genomes). Because of memory and time
constraints, we did not repeat this analysis on the 16S
rRNA dataset.

Additionally, we experimented with different model
architectures, hyperparameters and distance functions to
determine the most effective way to embed sequences
quickly and at scale.

In terms of model architectures, we attempted to
replicate three types of embedding models mentioned in
the paper, in order to determine which architecture
performed best: (i) the linear embedding model, which
was made up of one fully connected layer without any
non-linear activation function, (ii) the MLP model, which
was made up of two fully connected hidden layers with
non-linear activation functions and one fully connected
output layer, and (iii) the CNN model, which was made
up of two one-dimensional convolutional layers with
batch normalization and average pooling after each.
Within each model architecture studied, we included a
dropout layer immediately following the input layer.

For each model architecture, we also performed
hyperparameter tuning across the following model

hyperparameters: (i) dropout rate, which was tested across
all model architectures; (ii) choice of activation function,
which only applied to the MLP and CNN architectures;
(iii) number of units in the hidden layers of the MLP; and
(iv) number of filters used in the convolutional layers of
the CNN model, as well as various training
hyperparmeters, such as batch size and learning rate, in
order to evaluate which hyperparameter selections led to
the greatest efficiency, in terms of both performance–i.e.
loss minimization–and training speeds.

We also evaluated all of the distance functions studied
in the paper for each of the model architectures described
above. This essentially amounted to an investigation of
different loss functions, as we defined mean squared error
using the selected distance metric as our loss.

2. Summary of the Original Paper
2.1 Methodology of the Original Paper

The ensuing discussion will only focus on the
edit-distance approximation component of the Corso et al.
paper. Other tasks such as hierarchical clustering and
consensus string retrieval can be accomplished using very
similar computational approaches, so we focused on edit
distance as a “canonical” problem for neural distance
approximation.

The NeuroSEED approach in general can be
characterized as consisting of four user-selected variables
united by a common framework:

1. An encoder model
2. A decoder model
3. A distance metric
4. A task-appropriate loss function

Note that, for edit distance approximation, no decoder
model is needed and the loss function is fixed to be mean
squared error (or some closely related metric, such as root
mean squared error) between the true edit distances and
the distances between sequences in embedding space.

In the original paper, the test-train split is carried out
randomly (i.e. on the leaves of the tree or with n=0), and
the edit distance approximation is carried out with respect
to three genomic datasets, plus one fully random synthetic
dataset, using a number of neural architectures and
distance functions. The architectures tested in the original
paper are:

● Linear (single-layer perceptron)
● Multilayer dense neural network (MLP)
● Convolutional neural network (CNN)
● Gated recurrent unit (GRU)
● Transformer

In addition to these neural architectures, the authors also
tested k-mer embeddings, which can be computed directly
from the data and have no trainable parameters. For each
architecture, the distance functions tested were:

Paper equation 1. The distance functions used in the
Corso et al paper and their equations.

2.2 Key Results of the Original Paper
For the genomic datasets, the top three best-performing
combinations of architecture and distance function were:

1. RT988 (short genes): global transformer +
Manhattan distance; local transformer +
hyperbolic distance; global transformer +
hyperbolic distance.

2. QIITA (medium genes): CNN + hyperbolic
distance; global transformer + hyperbolic
distance; local transformer + hyperbolic distance

3. Greengenes (long genes): CNN + hyperbolic
distance; GRU + hyperbolic distance; CNN +
euclidean distance.

For the synthetic dataset, all methods performed
substantially worse; according to the authors, this is
because there is no underlying manifold from which the
data is being sampled; thus the dimensionality of the
manifold in which the random data lies is closer to the
observed dimensionality of the data; and thus the inputs
cannot be compressed as much.

The authors highlight the importance and novelty of
the hyperbolic distance function. On average across all
trials, using a hyperbolic distance function offered a 22%
reduction in the RMSE compared to the next-best
geometry with equivalent hyperparameters. In addition,
hyperbolic geometries are “saturated” at lower
dimensions than competing geometries, indicating that
smaller embeddings are possible under hyperbolic
geometries (see Figure 1). In general, this is consistent
with observations that hyperbolic geometries are more
efficient for embedding tree- and graph-structured data in
low dimensions.

Paper figure 1: RMSE reduction as a function of
embedding dimension for different distances

(Source: Corso et al)

3. Methodology (of the Students’ Project)

3.1. Objectives and Technical Challenges

The reimplementation of this project had four main
components:

1. Reproduction of some of the main results from
the paper (e.g. comparison of distance functions)

2. Hyperparameter search for some candidate
architectures

3. Application of NeuroSEED methods to
non-RNA data

4. Testing the effect of different train-test splits on
the accuracy of the NeuroSEED embeddings

To reduce the computational demands of this project, we
limited ourselves to the QIITA datasets for parts (1) and
(2) and only tested linear, MLP, and CNN architectures.
Since the comparison of distance functions was a central
investigation in the original paper, we reimplemented
each distance function for an initial comparison, but only
used Euclidean or hyperbolic distances for parts (2), (3),
and (4).

The main technical challenges anticipated in this
project were reimplementing the authors’ code using a
more straightforward, Keras- and TensorFlow-based
approach (the original paper is written in Torch) and
adapting their methods to new data/train-test splits. Since
the new data could be larger and we presumably had
smaller compute resources at our disposal than the authors
did, we understood that unanticipated challenges could
also arise in terms of memory usage, model complexity,
and computation time.

For instance, computing edit distances directly turned
out to be too slow (it would have taken on the order of 72
hours per dataset), leading us to re-implement some of the
authors’ optimizations (multithreading, aggressive
vectorization, and the use of the C-optimized Levenshtein

package). Many other such compromises are described in
subsequent sections.

3.2.Problem Formulation and Design
Description
The goal of this project was to reimplement a subset of
interesting experiments from the Corso et al paper. To
achieve this, we have redesigned the neural network as a
highly modular Siamese network in TensorFlow/Keras.
Specific details about the implementation, including
pseudocode and flowcharts, can be found in Section 4.2
of this paper.

4. Implementation
In this section, we discuss the acquisition of data and

the deep learning architectures we investigated. The
software design section includes an overview of the
modular Siamese network, an overview of the
preprocessing pipeline, and the details of the data
generator we built to mitigate potential memory issues
with regard to handling training data.

4.1 Data
The following datasets were used:

● QIITA dataset, provided by download link from
original NeuroSEED github repo [3]

● PheS dataset, generated using P3-scripts to
scrape from PATRIC [4]. This dataset contains
7,010 sequences.

● 16S RNA dataset, generated using P3-scripts to
scrape from PATRIC [4]. This dataset contains
16,861 sequences. It is roughly equivalent to the
GreenGenes dataset used in the original paper.

4.1 Deep Learning Network
We evaluated three separate network architectures from
the Corso et al. paper: a linear model, which does not
incorporate any non-linear activation functions, an MLP
model, and a CNN model. The first four layers were the
same across all three architectures, as they represent
transformations of the data that did not require learning
any parameters via a neural network layer. The linear
model simply added a fully connected dense layer (with
no non-linear activation function) of 128 units (to allow
for an output embedding of size 128) downstream of the
four model-agnostic layers. The MLP network added two
hidden layers with non-linear activations, plus a final
dense layer to output the embedding vectors of dimension
128. The CNN network consisted of two one-dimensional
convolutional layers, with batch normalization and
average pooling applied after each convolutional layer,
plus a similar final dense layer to output the embeddings

of size 128. See flowcharts below for details. Our code to
implement these model architectures can be found here on
Github, in the get_embedding_model() function.

Flowchart 5(a): General embedding encoder model
architecture. As an illustrative example here, we show
the dimensions of each layer when QIITA data is passed
into the network. The QIITA dataset consists of sequences
of dimension 152. For the linear architecture, the box
labeled “Neural Network architecture” would simply be
replaced by one fully connected dense layer, with no
non-linear activation function. For the MLP and CNN
architectures, this box would be replaced with the
architectures in the Flowcharts 5(b) and 5(c), respectively.

Flowchart 5(b): MLP embedding network
architecture. Here we show an illustrative example with
512 units in the hidden layers.

Flowchart 5(c): CNN embedding model architecture.
Here we show the network architecture and dimensions of
each layer, using 4 filters as an illustrative example.

4.2 Software Design

The following flowcharts cover the central aspects of our
software design, namely (i) the Siamese network for edit
distance approximation; (ii) the data pre-processing
pipeline for curating datasets with distance-based
splitting; and (iii) the data generator for generating
batches of data on the fly during training.

Flowchart 1: Siamese network for edit distance
approximation. This is the general architecture we
implemented in Keras. The modularized version can be
found here on Github as the function
train_siamese_model(). The encoder network, distance
function, and various training hyperparameters (e.g. the
optimizer used to train the model) can all be specified by
the user.

Flowchart 2: Preprocessing pipeline (distance-based
splitting). One of the key challenges of this project was to
preprocess sequence data into appropriate Keras inputs.
Converting biological sequences to numpy arrays is
relatively common practice; however the distance-based
splitting approach is, as far as we know, novel and
nontrivial. It can be found here on Github, particularly in
the function train_test_split_distance(). The entire
pipeline is wrapped in process_seqs(). Please note that,
although this flowchart only shows the generation of the
X_test and y_test arrays for conciseness, this pipeline
actually generates training, test, and validation sets in
parallel.

https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/model/models_cstm.py
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/model/train_model.py
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/utils/preprocessing.py

Pseudocode 1: distance-based splitting. These functions
break up test and train data such that the ~2n closest
relatives of each test set element also end up in the test
set.
get_clusters(y, indices, size, depth):

out = []
while len(out) < size:

row = random_row(y)
n_relatives = 2 ** depth
top_n = argpartition(row,

n_relatives)[0:n_relatives]
relatives = intersection(indices, top_n)
out = union(relatives, out)

train_test_split(X, y, test_size, val_size, depth):
n = len(X)
indices = range(n)
n_test = int(test_size * n)
n_val = int(val_size * n)
test_indices, nontest_indices = get_clusters(y,

indices, n_test, split_depth)
val_indices, train_indices = get_clusters(y,

nontest_indices, n_val, split_depth)
return X[train_indices], X[test_indices],

X[val_indices], y[train_indices], y[test_indices],
y[val_indices]

Flowchart 3: Data generator workflow. The flowchart
demonstrates the main functionality of the data generator,
the purpose of which is to generate batches of data on the
fly at each training step, which helps to avoid memory
issues when working with the large amount of input data
required by our model. The Siamese model required
unique data preparation steps at each epoch initialization
and batch request. Therefore, we consulted a Stanford.edu
blog on building data generators, and began from the
generic data generator code on that web page [8]. We then
modified the class methods to fit the unique needs of our
problem. The logic is described in the flowchart below.

The code for this data generator class, called
SequenceDistDataGenerator(), can be found here.

https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/model/generator.py

5. Results
5.1 Project Results

The two main experiments we conducted across our
different model architectures were (i) a comparison of
distance function metrics, and (ii) hyperparameter tuning
of model and training hyperparameters. We wanted to
compare and observe how different distance functions
perform using different embedding encoder network
architectures. While in our distance function tests, we
were mainly concerned with loss minimization, our
hyperparameter tuning was focused on loss minimization
as well as training time reduction, which was a significant
consideration in this project.

5.1.1 Distance Functions Experiment
The purpose of our distance function experiments was to
see how the model performed under each of the different
distance functions studied in the paper. This was
interesting to see since each distance made various
assumptions about the data. Some functions, such as
hyperbolic distance, focused on projecting the data in a
multi-dimensional hyperbolic plane. Below are some of
the plots of our results with respect to the linear model
architecture. We also investigated this across the other
two model architectures, but we only present the results of
the linear architecture here to avoid redundancy, as the
other network architectures demonstrated very similar
results.

Result Plot 1: Training loss using various distance
metrics, for the linear model architecture. (Note: results

for the other model architectures can be found here:
[linear][mlp][cnn])

Result Plot 2: Training loss using Euclidean and
hyperbolic metrics, for the linear model architecture.
(Note: results for the other model architectures can be

found here: [linear][mlp][cnn])

Result Plot 3: Validation loss using various distance
metrics, for the linear model architecture. (Note: results

for the other model architectures can be found here:
[linear][mlp][cnn])

Result Plot 4: Validation loss using Euclidean and
hyperbolic metrics, for the linear model architecture.
(Note: results for the other model architectures can be

found here: [linear][mlp][cnn])

https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_LINEAR.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_MLP.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_CNN.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_LINEAR.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_MLP.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_CNN.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_LINEAR.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_MLP.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_CNN.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_LINEAR.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_MLP.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_CNN.ipynb

Plot 1 displays the training loss for all distance metrics;
we notice that Manhattan distance is much worse than the
others in these plots. Plot 2 shows us a closer view of our
two best distance functions, Euclidean and hyperbolic.
Notice that the Euclidean metric performs far better than
the hyperbolic. Plot 3 and Plot 4 observe the same results
and observations as with Plot 1 and Plot 2, but this time
with val_loss. This is expected, as one would expect the
val_loss to be correlated with the model of the loss during
training.

5.1.2 Hyperparameter Search Experiment
Linear
Model

MLP
Model

CNN
Model

Hyperparamet
er Tuning with
Hyperbolic
Distance

act_func: tanh
dropout: 0.7
learning_rate:
0.01
batch_size:
512
Score (loss):
977.13

act_func: relu
dropout: 0.5
mlp_num_unit
s_hidden: 128
learning_rate:
0.01
batch_size:
256
Score (loss):
54.456

act_func:
tanh
dropout: 0.7
mlp_num_unit
s_hidden: 512
cnn_num_filte
rs: 3
learning_rate:
0.001
batch_size:
256
Score (loss):
nan

Hyperparamet
er Tuning with
Euclidean
Distance

act_func: relu
dropout: 0.5
learning_rate:
0.0001
batch_size:
512
Score (loss):
35.363

act_func: relu
dropout: 0.3
mlp_num_unit
s_hidden: 128
learning_rate:
0.0001
batch_size:
256
Score (loss):
32.989

act_func: relu
dropout: 0.3
mlp_num_unit
s_hidden: 512
cnn_num_filte
rs: 4
learning_rate:
0.0001
batch_size:
512
Score (loss):
39.588260650
634766

Result Plot 5: Best hyperparameters for each model with
respect to hyperbolic and euclidean [linear][mlp][cnn].

For this experiment we ran the RandomSearch method
from the keras-tuner library. The hyperparameters we
have chosen differ across the different models, as some
necessitated additional hyperparameters. The experiment
was done over 6 trials, each with a random set of
hyperparameters. We considered not to do GridSearch as
our search space is massive and given the enormous
training time for one model, we wouldn’t have received
our results on time. One interesting thing to note is that
the score for the “Hyperparameter Tuning with
Hyperbolic Distance” with respect to the Linear Model is

much higher compared to the other models. Notice that in
all models, the Euclidean distance still outperforms the
hyperbolic distance regardless of the model. We also
notice that when using the hyperbolic distance, the
learning rate is much higher compared to when using
euclidean distance.

5.1.3 Extension to non-RNA data
We successfully were able to run the NeuroSEED pipeline
on non-RNA data; specifically, we extended the analysis
to the PheS gene.

The following section on train-test splits was carried
out on PheS data, and goes into more details about the
results we attained on this dataset. Overall, these results
are consistent with the results achieved for 16S rRNA,
suggesting that this approach does generalize to other
coding sequences. Moreover, this demonstrates the
effectiveness of the preprocessing pipeline we developed,
enabling us to continue using our preprocessing and
training scripts with minimal further effort to investigate
the properties of other types of sequences. More
sequences were not tested during this project because of
the prohibitive time and computational costs of
computing the ground-truth edit distance matrices and
training good embedding models.

Accuracies across datasets are not readily
comparable, as the edit distances themselves tend to
differ. In order to understand whether NeuroSEED
performs “better” or “worse” for different sequences,
more work needs to be done concerning the choice of
embedding size and rescaling of loss values.

5.1.4 Train-test split experiment
For this experiment, we trained de novo embedding
models for split depths between 1 (sampling singleton
clusters into test and validation sets) and 8 (cluster size of
256), evaluating the test, train, and validation loss values
that resulted compared to the baseline value. Each model
was trained for 2 epochs using the following settings:

● Dataset: PATRIC PheS dataset
● Distance function: hyperbolic
● Model architecture: linear
● Input dimension: 1821
● Embedding size: 911 (half of input)
● Optimizer: Adam with clipped norms at 1 and

learning rate of 1
These values were chosen to imitate the results in the
tutorial notebook for the original NeuroSEED paper (and
especially so that the hyperbolic distance function could
be used), with an emphasis on run speed so that several
embedding models could be trained successively without
running into time constraints.

https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_LINEAR.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_MLP.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_CNN.ipynb

While the initial relationship was unclear from
observing test losses alone, with model performance even
appearing to improve as larger clades (depths 2-6) were
withheld, a more detailed analysis including the validation
loss revealed that this was an artifact of major increases in
variance. One reason why the variance could be
increasing, rather than the model performance dropping
across the board as expected, is that these models have
not yet converged over two epochs and thus the
performance is more of an artifact of the random seed
than of the actual manifold learning process. In the future,
more epochs, experiments with smaller datasets (e.g.
QIITA), and other distance functions may help reinforce
this pattern or bring out new relationships.

Results plot 6. Test error as a function of split depth.
Here we see that test error appears surprisingly robust
until a split depth of about 7 (126 genomes per cluster), at
which point it shoots up. Still, there is a fair amount of
noise in this result and it is hard to confidently draw any
conclusions from such an experiment.

Results plot 7. All errors as a function of split depth.
This plot is normalized so that all errors show as 100%
for depth=1. Here we see what’s really going on: the
variance between train/test/validation errors becomes very
large as split depths get deeper; this can be observed at
relatively low split depths. Any reduction in split depth
observed in the previous plot is explained away by this
increase in variance.

5.2 Comparison of the Results Between the
Original Paper and Students’ Project

In this section, we compare the results of our experiments
to the original papers. Specifically, we look at training
time and accuracy (%RMSE).

5.2.1 Comparison of Training Time Across
Model

Linear MLP CNN

Our
Training
Time

38.5
minutes

42.5
minutes

59.5
minutes

Original
Paper
Training
Time

66 minutes 54 minutes 126
minutes

Table 7: Comparison of training times between our
models (using Hyperbolic distance) and the original
paper’s training time [linear][mlp][cnn].

In the original paper when evaluating the models in the
edit distance section, they only used hyperbolic distance.
As this was the novelty of their paper. Hence when
comparing training times, we made sure to only compare
our models using the hyperbolic distance. From Table 7,
you notice that none of our training times are really
matching the original papers. This is because we used
different Linear, MLP and CNN architectures in the hopes
of potentially improving metrics all around. As you can
see, our training times are indeed much smaller than
theirs. But what’s more important in our findings is that

https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_LINEAR.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_MLP.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_CNN.ipynb

the relationship of the training times between the models
is the same in the original paper. The CNN model in our
results and paper’s results had the longest training time.
This makes sense since CNN usually has higher
parameters. The Linear and MLP training times are
different. This may be because our Linear model has
fewer model parameters compared to the one used in the
paper. Overall, this comparison showed that across the
board we were able to have short training times compared
to the paper’s model as well as our results showing
similar relational characteristics as the paper’s results.

5.2.2 Comparison of Accuracy Across Models

Linear MLP CNN

Our RMSE
(converted
from SE)
Time

20.56518 4.8548 nan

Original
Paper
Training
Time

2.50 1.85 1.56

Table 7: Comparison of paper’s %RMSE with our
converted %RMSE from SE [linear][mlp][cnn]

Equation 1: %RMSE formula used in the paper

In the original paper they compared their loss using
%RMSE in order to make the numbers comparable over
different datasets. However for us, we only used one
dataset for our experiments. We used a squared error for
simplicity. However, the numbers shown in Table 7 are
converted from SE loss to %RMSE. We notice that our
losses are higher than the original paper’s losses. This
may be due to differences in architecture for Linear, MLP,
and Dense. We also used different hyperparameters than
the ones used in the paper as well, which may have been a
contributing factor. We also notice that our CNN model
loss is “nan”. This is due to numerical stability, which has
been solved for the Linear and MLP models, but not for
CNN due to time constraints. We also notice a decreasing
trend in loss from Linear to MLP to CNN in the paper.
This can also be observed in our results too when
compared side by side shown in Table 7.

5.3 Discussion of Insights Gained

5.3.1. Input data handling via a data generator

For our edit distance approximation problem, the datasets
we are interested in consisted of sequences of base pairs
in a particular gene across different organisms. In these
datasets, each distinct organism constitutes a sample and
each base pair in the genetic sequence represents a
feature. In the QIITA dataset, we have 7,000 samples in
the training set. Since we are interested in editing distance
between different organisms, however, our models require
input data consisting of all unique pairs of
organisms/sequences. If we have N samples in the
original data, then, this means that our input data into the
model is N*(N-1)/2 unique pairs. For the QIITA dataset,
7,000 samples turns into 24.4965 million unique pairs of
samples. Due to memory considerations, that means that
we could not simply pass in all paired training data into
the model. Instead, our problem required a data generator
to (i) generate the sample pairs from the original samples
and (ii) perform the shuffling and batching of those pairs
at each epoch, prior to passing in the batch at each
training step.

In order to build the data generator, we first
consulted a tutorial on building generic data generators to
build data batches on the fly at each training step [8].
Using the code in this tutorial as our starting point, we
then modified the data generator to:

(i) take in the input data matrix (our X
variables) and distance matrix (our y variables)
as initialization inputs, rather than a list of IDs
used to pull individual data points from separate
files, as our data was designed to be loaded in
matrix form since the original datasets
themselves are fairly tractable to deal with;
(ii) prepare the set of all unique pairs of
input data sequences, as this is the full (and
much larger) set of data that we need to pass in
as inputs to our deep learning model; shuffle
over this set of combinations rather than over a
set of indices before running each epoch, if
shuffling is desired;
(iii) for each batch of data, return X
variables that represent a paired list of samples
rather than a singular input matrix, and y
variables that represent the distance between
each pair.

Our data generator was implemented via our customized
SequenceDistDataGenerator() class, the code for which
can be found here.

5.3.2. Challenges with the hyperbolic distance function

https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_LINEAR.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_MLP.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_CNN.ipynb
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/model/generator.py

The hyperbolic distance function can be extremely poorly
conditioned for various vector inputs. To handle this, the
NeuroSEED authors apply boundary conditions on
intermediate calculations in their hyperbolic distance
calculation and also enforce that each input vector lies
within a radius that is itself a tunable model parameter. In
our initial hyperbolic distance function specification, we
encountered loss that blew up to NaN very quickly. We
then added the boundary conditions on intermediate
calculations in our function—both the boundary
conditions that the NeuroSEED authors utilize in their
code as well as additional boundary conditions and
approximations when numbers are approaching machine
precision limits—and still encountered issues with NaN
loss. We then added gradient clipping as an additional
protection against NaN loss, which also helped, but we
still found that we ran into NaN loss on various occasions.

Eventually, after spending a week debugging the
hyperbolic distance function in an effort to prevent the
occurrence of NaN loss, we decided that it was best to
move on to new areas of the project, as there was no
guarantee that we would be able to fix this issue before
the project was due, and we needed to ensure that we
could generate some results before the project deadline.
We suspect that one of the reasons that we may have had
more issues with this particular problem than the
NeuroSEED authors seemed to have is due to the fact that
they implement a layer which enforces that embedding
vectors lie within a learnable radius parameter, with
another learnable scaling parameter then applied to the
final embedded distance to fix the scale difference that the
radius enforcement would produce. We suspect that
implementing these additional features in our model
architectures may have helped to further mitigate this
NaN loss issue in training. We also suspect that may have
helped bring the hyperbolic distance loss down, as our
loss using hyperbolic distance was significantly larger
than the loss we achieved using Euclidean distance, which
was not the finding of the NeuroSEED authors. However,
it seemed like a very large undertaking to explore the
authors’ PyTorch implementation of these custom layers
and then implement them in Tensorflow and Keras, so we
chose not to spend time on this particular feature. With
more time, however, we would hope that doing so would
allow us to replicate the finding of the authors, that
hyperbolic distance is the best distance metric to use in
terms of minimizing loss in edit distance approximation
using embeddings.

5.3.3. Runtime considerations

Early in the project when we tried to replicate the model
performance by using the same training settings. We
noticed that our training time was over two hours for a

single epoch. As expected, this was due to the difference
in hardware.

Although we ran our models on the Google
Cloud VM attached with a GPA. The paper mentions that
they used the GPU (GeForce GTX TITAN Xp). This GPU
far exceeds the computational power of our GPU. For this
reason, we had to time methods to optimize our training
time. One methodology was the data generator. This
significantly reduced the training and the amount of the
data with the GPU while training,

Another methodology was identifying layers
with unneeded too many parameters and substituting with
simpler layers. Specifically, replacing the Keras
Embedding layer with our own custom one-hot encoding
layer. This helped significantly as our custom layer has 0
parameters. This reduced our training time by ~30%.

Lastly we had to reduce our training settings.
One specific example is the number of epochs. In the
paper's repository, they train the model for 15 epochs.
With our hardware and time constraints we could not train
the model for 15 epochs, hence we chose only 5.
Interestingly, the performance we attained with only 5
epochs was proportionally similar to the paper's result.
This may have been due to the slight variations we made
to our models.

Overall, we have to make significantly different
engineering decisions and changes to our model
architecture and training loops in order to meet with the
runtime constraints and make sure our experiments and
models are completed in a reasonable time.

5.3.4. Special considerations for the CNN network

There were a few special considerations that we needed to
deal with in implementing the CNN embedding encoder
model. First, we should point out that the CNN we use in
this model is a one-dimensional CNN, which is different
from the two-dimensional CNNs that we have used
throughout this course, but naturally more appropriate for
genetic sequences, which, unlike images, are
one-dimensional in nature. We selected the CNN
architecture for replication in this project (i) it was one of
the higher-performing architectures in the paper and (ii)
because we suspected that parameter sharing across
neighboring features could be beneficial for the encoding
model, given that neighboring base pairs in a genetic
sequence are translated in sequence, with three base pairs
encoding a single amino acid building block. Therefore
we used a kernel size of 3 in our CNN model architecture.

The first issue that we encountered in the CNN
model development was that we could not simply take in
the output of a flattened layer to be used in our first
convolutional layer; instead, we needed to reshape to add
a dimension (even though the dimension was 1). We were

able to fix this bug fairly quickly, but it did take some
tinkering and we thought it worth noting that Keras does
not automatically handle this for a one-dimensional
convolutional layer.

The second, and much more significant, issue
that we ran into in our CNN implementation was that the
CNN model required far more memory than the other two
models. In fact, we could not run the CNN model without
upgrading our Google cloud machines to 8 vCPUs and 30
GB of memory. Moreover, the CNN model seemed to be
more sensitive to loss blowing up to NaN, even with
gradient clipping and bounding in our hyperbolic distance
function.

5.3.5. One-hot encoding layer

When developing the embedding layer in our models, we
needed to make sure that the embedding one hot encoded
the data at some point. This is because our data contains
only 0, 1, 2, and 3. Each number identifies with a single
DNA nucleotide - A, C, T, and G. However, the model
may think of the numbers as some hierarchy and give
more weight to one or another, while in fact they have
equal weight and do not not have any hierarchy structure
between them. This is why one-hot encoding is important
to our model. Initially, we used the Keras Embedding
layer, as we thought if the vocabulary and out_dim match,
then that would result in the Embedding layer one hot
encoding the data. However, this was not the case and
very apparent we notice the layer having an usually high
number or weights for a simple task. Even more so, the
model training time was > 1.5 when using the Embedding
layer. For this reason and to be more accurate with what
the paper was doing, we implemented our own keras
Layer, where it does a single operation to one-hot encode
the data. Two advantages were seen in this change. One
was the runtime was significantly decreased and the
model parameters were cut in half. Overall, this was a
good decision made by the team. You can see how we
implemented the custom one-hot encoding layer here.

5.3.5. Custom Hyperparameter Tuning

When constructing the hyperparameter search test, we had
to decide on whether to do a GridSearch or a
RandomSearch. GridSearch usually gives the best
hyperparameter as it goes through every possible
combination in the search grid. However, given that all
our models take roughly >45minutes and we have
multiple parameters for each model, it would take days
for the GridSearch to complete, which is time we don’t
have. Hence, we decided to go the RandomSearch route.
RandomSearch still produces good model settings but it
doesn’t take much time. We also limited the number of

trials to 6 for each search in order to reduce the run time.
Furthermore, since we are using keras models, we used a
library called keras-tuner [7] to implement our search. We
had to implement a custom Tuner class in order to
incorporate our data generations and how we build our
model, since our model doesn’t have a typical keras
architecture. We also had a discussion in whether to
include cross-validation in our tuner search, but we
decided not to due to time constraints. We also had to
decide the search space for each of the hyperparameters.
One important thing we had to consider was our big
dataset. Due to that consideration, we limited the search
space for each of the hyperparameters by only subsetting
the options that would prove advantageous for a full (and
big) dataset. You can see how we implemented our tuner
class here.

6. Future Work
This project has been extremely promising for
demonstrating the feasibility of applying a
NeuroSEED-like approach to other data. Many of these
tasks have been wrapped up in convenient utility
functions. Certain things that were cut due to time
constraints would be top priorities for future work:

● Applications of NeuroSEED to more datasets,
including more sophisticated methods for
comparing losses across datasets and a priori
choices of embedding dimension.

● More downsampling analysis for other datasets,
architectures, and distance functions.

● Downsampling based on phylogenetic tree rather
than distance (code for this is implemented, but
we have not found an appropriate dataset. The
issue is that few, if any, neural-size datasets have
complete phylogenetic trees available).

● More hyperparameter search, including
extension of the architecture to
transformer/GRU/RNN/LSTM models.

The following future directions are more theoretical and
outside the original intended scope of the project.
Nonetheless, they appear to be promising research
directions:

● Further troubleshooting of the hyperbolic
distance function.

● Thorough comparisons between linear encoding
vs. taking the top n principal components to
create an n-dimensional embedding.

● Applications of novel geometries for shotgun
metagenomics or embedding multiple
genes/genome regions at once.

● Applications of neural distance embeddings to
metagenomic data, e.g. by adding 16S

https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/model/layer.py
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164/blob/main/HS_test_hyperparam_tuning_MLP.ipynb

embeddings together in proportion to their
relative abundances.

Finally, we have not touched on a number of research
directions identified in the original paper. We underscore
them here as inspiration for future researchers:

● Generalization of the edit-distance framework to
use different (inexact) oracles in order to speed
up the training data generation process.

● The explicit use of hyperbolic graph neural
networks to further exploit the geometry of the
hyperbolic embedding space.

● The downstream use of NeuroSEED-style
embeddings for deep learning tasks on biological
sequence data. (It may be possible to use the
trained embedding models from our framework
directly as a component of a downstream neural
net here.)

7. Conclusion
The goal of this project was to reimplement the
NeuroSEED architecture outlined in the Corso et al paper,
turning it into a modular and legible set of Python scripts.
We accomplished this in Keras and Tensorflow,
implementing all of the functionality of NeuroSEED
except for decoder functions. (Any neural network could
be used for the encoders; we explicitly coded linear,
multilayer dense, and convolutional architectures to test.)

While much of our data and analysis matched the
authors, some of the performance of the hyperbolic
distance function diverged. Everything else passed our
sanity checks and comparisons to the original paper.

In addition to comparing and reimplementing key
elements of the original study, we made a number of
novel contributions to the study of neural embeddings in
biology. In particular, we performed further testing on
different NeuroSEED parameters, improving our
understanding of what approaches are most effective for
generating embeddings. Additionally, we explored the
dependence of NeuroSEED on observing closely-related
sequences in the training set, helping advance theoretical
and mechanistic understanding of the way NeuroSEED
embeddings seek the manifolds underlying sequence data.
We hope that these contributions will help understand
how to generate good embeddings, under what
circumstances NeuroSEED-based models can generalize,
and in what circumstances researchers may wish to use
such embeddings.

6. Acknowledgement
Provide acknowledgements such as support, help, or

assistance from online resources, TAs, colleagues.

7. References
[1] Rohith Ravindranath,Philippe Chlenski,Hannah Steele
(2021)ECBM4040NeuroseedClassroom[Source Code].
]https://github.com/ecbme4040/e4040-2021fall-project-BI
OM-rr3415-pc2946-hs3164.
[2] Corso, Gabriele, et al. "Neural Distance Embeddings
for Biological Sequences." Advances in Neural
Information Processing Systems 34 (2021).
[3] Gabriele Corso(2021) Neuroseed [Source Code].
https://github.com/gcorso/neuroseed.
[4] Davis, James, et al. “The PATRIC Bioinformatics
Resource Center: expanding data and analysis
capabilities.” Nucleic Acids Research. 2020
[4] “Python-Levenshtein,” PyPI. [Online]. Available:
https://pypi.org/project/python-Levenshtein/. [Accessed:
22-Dec-2021].
[5] “ETE3,” PyPI. [Online]. Available:
https://pypi.org/project/ete3/. [Accessed: 22-Dec-2021].
[6] “Biopython,” Biopython · Biopython. [Online].
Available: https://biopython.org/. [Accessed:
22-Dec-2021].
[7] “Introduction to the keras tuner : Tensorflow Core,”
TensorFlow. [Online]. Available:
https://www.tensorflow.org/tutorials/keras/keras_tuner.
[Accessed: 22-Dec-2021].
[8] A. Amidi and S. Amidi, A detailed example of how to
use data generators with Keras. [Online]. Available:
https://stanford.edu/~shervine/blog/keras-how-to-generate
-data-on-the-fly. [Accessed: 12-Dec-2021].
[9] Rohith Ravindranath,Philippe Chlenski,Hannah Steele
(2021)ECBM4040Neuroseed[Source Code].
https://github.com/rohithravin/ECBM4040-NuroSEED-Pr
oj

8. Appendix

8.1 Individual Student Contributions in Fractions

rr3415 pc2946 hs3164

Last Name Ravindranath Chlenski Steele

Fraction of
(useful) total
contribution

1/3 1/3 1/3

What I did 1 Developed
and coded
hyperparamet
er tuning tests
and analysis
(ran the MLP
and Linear
notebooks)

Overall
conceptualiza
tion; most of
the
non-experim
ent-specific
body of the
report (intro,

Data generator
code development
and report
descriptions

https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164
https://github.com/ecbme4040/e4040-2021fall-project-BIOM-rr3415-pc2946-hs3164
https://github.com/gcorso/neuroseed
https://github.com/rohithravin/ECBM4040-NuroSEED-Proj
https://github.com/rohithravin/ECBM4040-NuroSEED-Proj

conclusions,
etc)

What I did 2 Developed
and coded
distance
function tests
and analysis
(ran the MLP
and Linear
notebooks)

Initial Keras
implementati
on of the
Siamese
model for
NeuroSEED;
skeleton code
for
modularized
model.

Code and
discussion of
embedding model
architectures
(including
searching through
NeuroSEED code
to understand
architectures
studied)

What I did 3 Wrote the
distance
functions as
formulated in
the original
paper
(hyperbolic,
cosine,
euclidean,
manhattan,
square)

All
preprocessin
g code; all
analysis
having to do
with
train-test split
variations

Work on
improving
conditioning for
hyperbolic dist
function (e.g.
tested bounding in
the distance
function, gradient
clipping, etc.) +
write-up of this
work

8.2 Support Material
While working on this project, we created a public Github
repository. This is where we did the bulk of our project
work and pushed incremental changes, as one of our
group members could not join the classroom repository
for some time due to technical issues. If you would like to
check this repository, which is public, you will find that
the only contributors to the repository are the members of
this project, which are the same members (GitHub
usernames) in the classroom github repository. Once our
codebase and analysis was complete, we moved
everything to the GitHub classroom repository. If you
would like to view our commits and backtrack our
progress, please feel free to do so on our public repository
[9].

